

DROUGHT HAZARDS 1: METEOROLOGICAL DROUGHTS

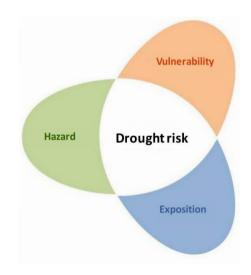
Overview of different indicators and tools for characterizing, assessing and monitoring meteorological droughts

Helena Gerdener, Olga Engels, and Jürgen Kusche Institute of Geodesy and Geoinformation, University of Bonn

4th Webinar, 4 June 2019

- Global impacts on agriculture, society and economic losses
- Increasing frequency of drought events
- **Meteorological**, agricultural, hydrological and socioeconomic droughts

(FAO, 2013)

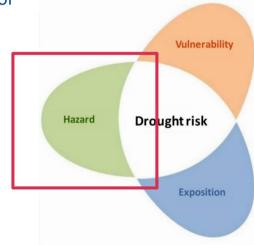


GLOBE DROUGHT

- Web-based drought information system
- Drought monitor
- Considering drought risk and impact
 - Hazard
 - Exposure
 - Vulnerability
- Different remote sensing data products and models for analysing the drought types
- historical, NRT and early warning component
- 1st webinar and lecture

SPONSORED BY TH

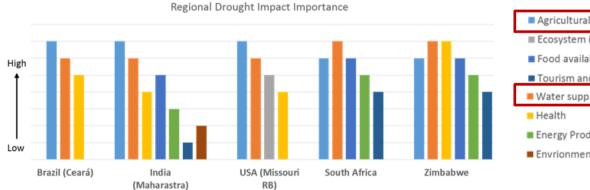
GLOBE DROUGHT


Federal Ministry of Education and Research

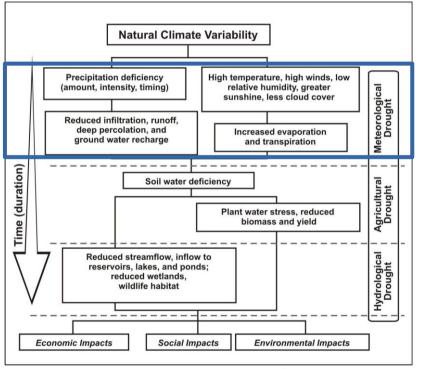
SPONSORED BY THE

IGG in GlobeDrought

- Drought hazard
- Hazard indicators for meteorological and GRACE-based indicators for hydrological drought
- Different indicators are merged to a combined hazard indicator
- Global and regional analysis



Rainfed agricultural systems


Irrigated agricultural systems Water supply

BACKGROUND

National Drought Mitigation Center, University of Nebraska-Lincoln, U.S.A

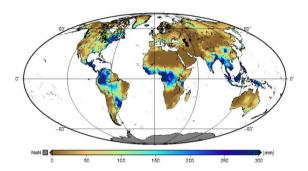

Meteorological drought

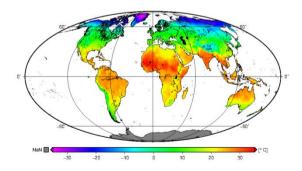
- Mainly precipitation deficit
- precipitation is flux
- eLecture

Agricultural drought - Soil moisture deficit

Hydrological drought

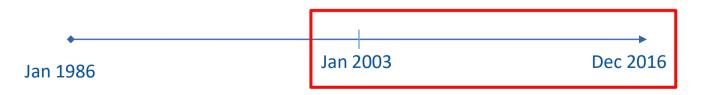
Effect of precipitation shortfalls on surface/subsurface water storages
Phase shift to meteorological droughts



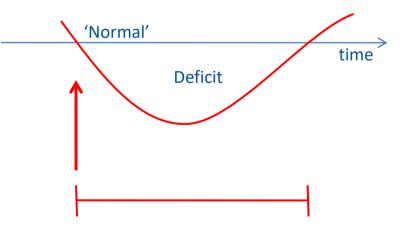


PRECIPITATION, TEMPERATURE

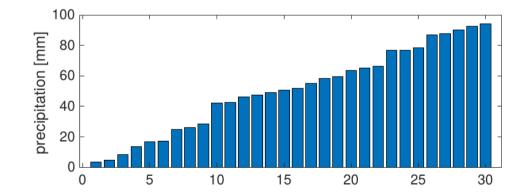
- WFD/WFDEI dataset, Weedon et al. (2010, 2011, 2014)
- Homogenized and provided by University Frankfurt, Müller Schmied et al. (2016)
- Homogenization to bias correct offset between climate variables of WFD and WFDEI



GENERAL FACTS


- Period: computation for 1986 to 2016, results 2003-2016
- Temporal resolution: daily, transformed to monthly
- Spatial resolution: 0.5 x 0.5° grid

Study area: global and regional: South Africa, Maharashtra (West India), Ceará (East Brazil), Missouri river basin (US), Zimbabwe


- Characterization (retroperspective), monitoring and triggering management plans and decisions for drought
- Defined to the 'normal' condition
- Often based on threshold, percentiles, standardization, etc.
- Describing the drought events by:
 - Location
 - Timing
 - Duration
 - Severity

DROUGHT INDICATORS

- Precipitation for one month of each year e.g. January
- Compare to 'normal' condition
 - Percentiles
 - Probability distribution
 - Standardization, Normalization

DROUGHT INDICATORS

	Meteorology	Page	Ease of use	Input parameters	Additional information
	Aridity Anomaly Index (AAI)	11	Green	P, T, PET, ET	Operationally available for India
	Deciles	11	Green	Р	Easy to calculate; examples from Australia are useful
	Keetch–Byram Drought Index (KBDI)	12	Green	Р, Т	Calculations are based upon the climate of the area of interest
\longrightarrow	Percent of Normal Precipitation	12	Green	Р	Simple calculations
	Standardized Precipitation Index (SPI)	13	Green	P	Highlighted by the World Meteorological Organization as a starting point for meteorological drought monitoring
	Weighted Anomaly Standardized Precipitation (WASP)	15	Green	Р, Т	Uses gridded data for monitoring drought in tropical regions
	Aridity Index (AI)	15	Yellow	Р, Т	Can also be used in climate classifications
	China Z Index (CZI)	16	Yellow	Р	Intended to improve upon SPI data
	Crop Moisture Index (CMI)	16	Yellow	Р, Т	Weekly values are required
	Drought Area Index (DAI)	17	Yellow	Р	Gives an indication of monsoon season performance
	Drought Reconnaissance Index (DRI)	17	Yellow	Р, Т	Monthly temperature and precipitation are required
				1	

Effective Drought Index (EDI)	18	Yellow	P	Program available through direct contact with originator
Hydro-thermal Coefficient of Selyaninov (HTC)	19	Yellow	Р, Т	Easy calculations and several examples in the Russian Federation
NOAA Drought Index (NDI)	19	Yellow	Р	Best used in agricultural applications
Palmer Drought Severity Index (PDSI)	20	Yellow	P, T, AWC	Not green due to complexity of calculations and the need for serially complete data
Palmer Z Index	20	Yellow	P, T, AWC	One of the many outputs of PDSI calculations
Rainfall Anomaly Index (RAI)	21	Yellow	Р	Serially complete data required
Self-Calibrated Palmer Drought Severity Index (sc-PDSI)	22	Yellow	P, T, AWC	Not green due to complexity of calculations and serially complete data required
Standardized Anomaly Index (SAI)	22	Yellow	Р	Point data used to describe regional conditions
Standardized Precipitation Evapotranspiration Index (SPEI)	23	Yellow	Р, Т	Serially complete data required; output similar to SPI but with a temperature component
Agricultural Reference Index for Drought (ARID)	23	Red	P, T, Mod	Produced in south-eastern United States of America and not tested widely outside the region
Crop-specific Drought Index (CSDI)	24	Red	P, T, Td, W, Rad, AWC, Mod, CD	Quality data of many variables needed, making it challenging to use
Reclamation Drought Index (RDI)	25	Red	P, T, S, RD, SF	Similar to the Surface Water Supply Index, but contains a temperature component

Reference: Svoboda and Fuchs, 2016

IMPLEMENTATION

FOUR DIFFERENT METEOROLOGICAL DROUGHT INDICATORS

- Standardized Precipitation Index (SPI) \rightarrow P
- Standardized Precipitation Evapotranspiration Index (SPEI) → P,T

Weighted Anomaly Standardized Precipitation Index (WASP)

Percentile Index

 Accumulation periods and distribution
 functions

- Accumulation periods, standardization and weighting
- Percentile rank
 method

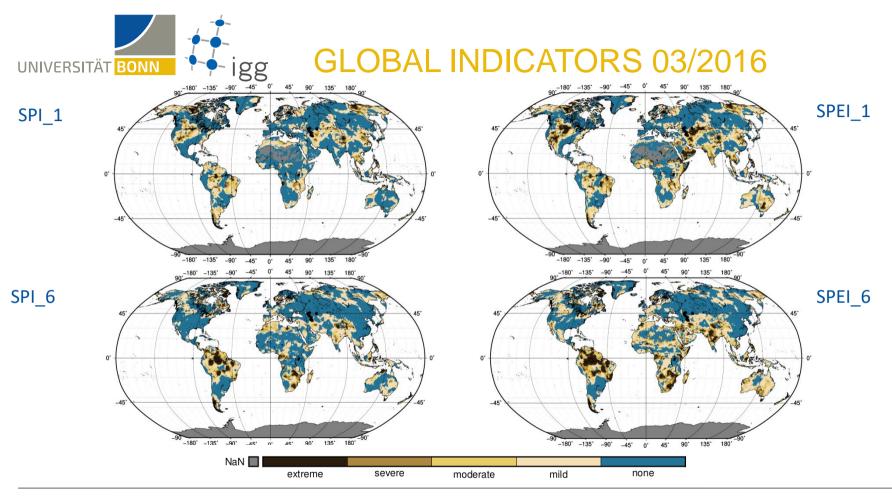
LITERATURE RESEARCH

	Pros	Cons
SPI	All climate regions Multiple time scales Can handle gaps	No temperature Should be based on long data record
SPEI	All climate regions Multiple time scales Can handle gaps Temperature	Should be based on long data record
WASP	Weighting reduces artificially magnified precipitation (start and end of year)	Worse results in desert
Percentiles	Less complex	Requires long data record

Found in Arnold (2006), Svoboda and Fuchs (2016) and Schär et al. (2016)

GLOBAL ANALYSIS

IMPLEMENTATION


FOUR DIFFERENT METEOROLOGICAL DROUGHT INDICATORS

- Standardized Precipitation Index (SPI) → P
 Standardized Precipitation Evapotranspiration Index (SPEI) → P,T
 - Weighted Anomaly Standardized Precipitation Index (WASP)

 Accumulation periods, standardization and weighting

Percentile Index

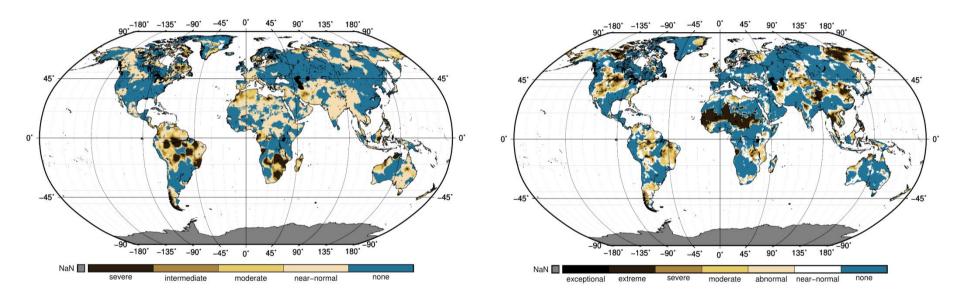
Percentile rank
 method

IMPLEMENTATION

FOUR DIFFERENT METEOROLOGICAL DROUGHT INDICATORS

- Standardized Precipitation Index (SPI) \rightarrow P
- Standardized Precipitation Evapotranspiration Index (SPEI) \rightarrow P,T
- Accumulation periods and distribution
 functions

- Weighted Anomaly Standardized Precipitation Index (WASP)
 Accumulation periods, standardization and weighting
- Percentile Index


 Percentile rank method

GLOBAL INDICATORS 03/2016

WASP_6

Percentiles

SUMMARY GLOBAL ANALYSIS

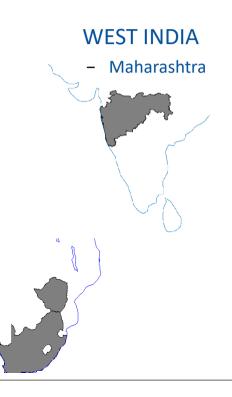
- Differences between SPI and SPEI
- Differences between accumulation periods of SPI, SPEI
- Accumulation period depends on observed drought event
- Drought events of varying severity visible
- Weaknesses in the desert
- Similarities of percentiles and SPI_1/ SPEI_1

REGIONAL ANALYSIS

STUDY REGIONS

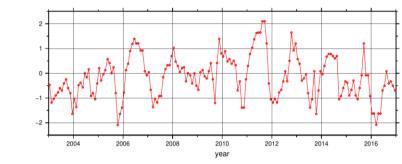
UNITED STATES

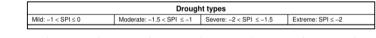
 Missouri river basin

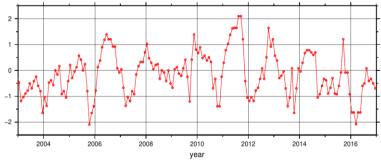


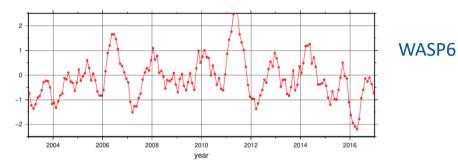
EAST BRAZIL

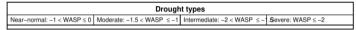
• Ceará

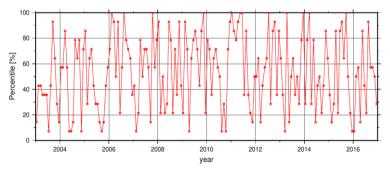

SOUTHERN AFRICA


- South Africa
- Zimbabwe




REGIONAL ANALYSIS SOUTH AFRICA



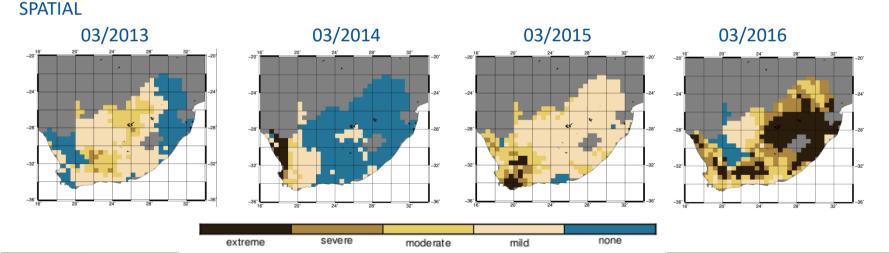


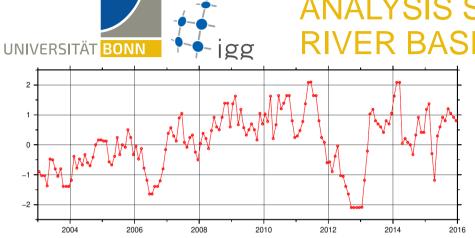
	Drough	nt types	
\cdot Mild: -1 < SPEI ≤ 0	·Moderate: -1.5 < SPEI ≤ -1	Severe: -2 < SPEI ≤ -1.5	Extreme: SPEI ≤ -2

		Drought types		
Abnormal: 20-30	Moderate: 10-20	Severe: 5 - 10	Extreme: 2 – 5	Exceptional: 0 – 2

Percentiles

SPEI6

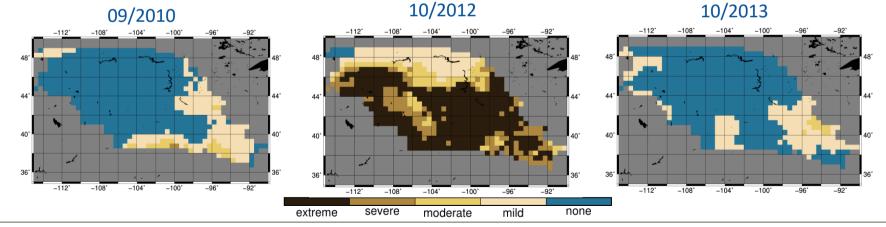

SPI6

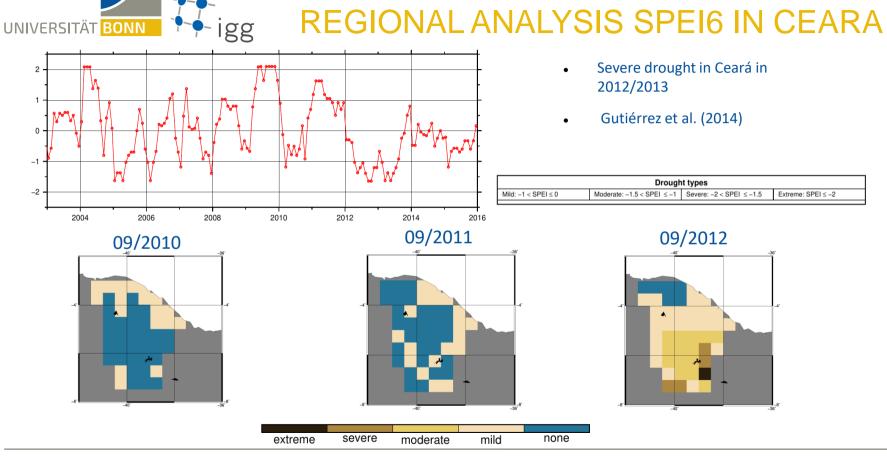


REGIONAL ANALYSIS SPEI6 SOUTH AFRICA

TEMPORAL

- Identified droughts in 2015/2016 (and 2004)
- Different drought intensities end 2004 and 2015/2016
- Indicator average?





ANALYSIS SPEI6 IN THE MISSOURI RIVER BASIN

- Extreme drought in a large part of the basin in 2012, begin of 2013
- GAO report (2014)

Drought types				
\cdot Mild: -1 < SPEI ≤ 0	Moderate: -1.5 < SPEI ≤ -1	Severe: -2 < SPEI ≤ -1.5	Extreme: SPEI ≤ -2	

Meteorological droughts

STUDY REGIONS – REPORTED DROUGHTS

Ceará	2010-2013, most impactful in 2012/2013 (Gutiérrez, 2014)
Maharashtra	2003, 2012 Krishna river basin (Mahajan and Dodamani, 2016)
Missouri river basin	2012/2013 (GAO report, 2014)
South Africa	2004 (EMDAT 2018, Masih 2014), 2003-2007 (Malherbe, 2016)
	2003/2004 Crocodile river catchment (Mussá, 2014)
	2015 (EM-DAT, 2018), 2015/2016 (Monyela, 2017)
Zimbabwe	2003/2004 Crocodile river catchment (Mussá, 2014)
	2007, 2010 (Masih, 2014, EM-DAT)

Spatial resolution

- Which computation of spatial average?
- ...

Temporal resolution

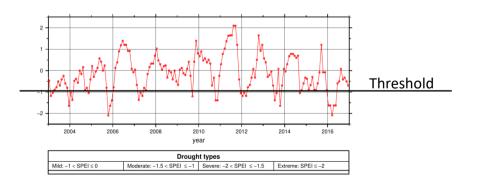
- Usage of temporal weighting? E.g. more weight for adjacent observations
- Which input period for indicator computation?
- ..

Drought periods

Valid for persistent and/or temporary droughts?

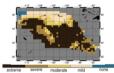
Validation

- Quantity of indicator using different input data
- Quality of indicator



From monthly to static Hazard risk map

- Predefinition of extreme drought in 2.3%
- Additional assumptions


1) Meteorological droughts, context of GlobeDrought

2) Overview of global and regional drought indicators

- Time-variable drought analysis
- Introduction to static drought analysis

3) Difficulty in finding the 'best' indicator

Next Learning Block: Hydrological droughts

Contact: Helena Gerdener <u>gerdener@geod.uni-bonn.de</u> Institute of Geodesy and Geoinformation University Bonn

- Arnold (2006): Natural disaster hotspots case studies.
- Lyon (2004) The strength of El Nino and the spatial extent of tropical drought.
- McKee et al. (1993): The relationship of drought frequency and duration.
- <u>Müller Schmied et al. (2016)</u>: Variations of global and continental water balance components as impacted by climate forcing uncertainty and human water use.
- Schär et al. (2016): Percentile indices for assessing changes in heavy precipitation events.
- Svoboda and Fuchs (2016): Handbook of drought indicators and indices.
- <u>Vicente-Serrano et al.</u> (2009): A multiscalar drought index sensitive to global warming: The Standardized Precipitation Evapotranspiration Index.
- <u>Weedon et al.</u> (2010): The WATCH forcing data 1958-2001: A meteorological forcing dataset for land surface- and hydrological models.
- <u>Weedon et al.</u> (2011): Creation of the WATCH forcing data and itl use to assess global and regional reference crop evaporation and land during the twentieth century.
- <u>Weedon et al.</u> (2014): The WFDEI meteorological forcing data set: WATCH forcing data methodology applied to ERA-Interim reanalysis.