

Detecting Drought and Vegetation Health with Remote Sensing

Olena Dubovyk, Gohar Ghazaryan

With contribution of Javier González, Valerie Graw, Joans Schreier, Johannes Loer and Simon König

- Overview of Remote Sensing (RS) data for vegetation monitoring
- Drought hazard, impact and health case studies
- RS perspective of risk assessment based on parametrization with yield

INTRODUCTION

Drought – a global problem

- Droughts affect millions of people and cause significant damages all over the world:
 - Over the United States, droughts resulted in over \$200 billion costs during 1980-2014 (NCDC, 2015)
 - In Europe, the damages of droughts over the last 30 years are at least €100 billion (CEC, 2007)
 - In North Africa, the droughts in 2000-2011 brought about 3 million people in extreme poverty and wiped out 80–85 % of herd stock (UN-DESA, 2013)

INTRODUCTION: Terms and concepts

 Predisposition of exposed elements to suffer adverse effects when impacted by a drought event

 An inventory of elements, such as population, its livelihoods and assets, in an area where drought events may occur

METHODS: Drought assessment

Drought hazard indicators

- Drought indicators are used to provide quantitative assessment of the different characteristics of drought events (severity, location, timing and duration)
- Categories: (a) meteorology, (b) soil moisture, (c) hydrology,
 (d) remote sensing and (e) composite or modelled
- Drought hazard assessment is conducted:
 - Using a single indicator
 - Using multiple indicators

METHODS

Remote Sensing based vegetation condition monitoring

Spectral reflectance of vegetation

METHODS

Remote Sensing based vegetation condition monitoring

Elevation = 4455 ft

VCI 100% 33*5 400 km 20°E 25°E 30°E

25°E

Primary proxies for vegetation stress

Maize in the mid-growing season (March 2007)

02/21/2007 8:47:42 AM

Large scale assessment based on Remote sensing (March 2007)

28*5

33*5

METHODS

Some selection..

Name	Acronym	Inputs	
Fullemend V/agatation Index	E1/1	C-+	
$NDVI = \frac{NIR - R}{NIR + R}$			
		3αι	
Vegetation Condition Index (VCI) = $\frac{\text{EVI} - \text{EVI}_{min}}{\text{EVI}_{max} - \text{EVI}_{min}} * 100$			
Jon Aujusteu vegetation muez	JAVI	Jai	
ESI =AET/PET			
Evaporative Stress Index	ESI	Sat +	
Water Requirement Satisfaction Index	WRSI	Sat +	
NI - mar alter al Difference - NA - takens In al	NIDAI	C-1	
$NDMI = \frac{NIR - SWIR}{NIR + SWIR}$			
Combined Drought Indicator	CDI	Sat +	
Procinitation Condition index	DCI	Cat⊥	
Temperature Condition Index (TCI) = $\frac{\text{TEMP}}{\text{TEMP}}$	P _{max} -TEMP _{nax} -TEMP _{min}		

8

Drought dynamics and vegetation condition in Eastern Cape

Prought hazard severity classes	VCI Values
Mild Drought	30 - 40
Moderate Drought	20 - 30
Severe Drought	10 - 20
Extreme Drought	< 10

Classification for VCI

Kogan, 1998

Graw et al 2018, Graw et al, 2020 (In press)

Interplay of different drought indicators

SPI/VCI/TCI overlap

SPI >0, VCI <30
 SPI <(-1), VCI >30
 SPI <(-1), VCI <30
 SPI >0, VCI <30, TCI <40
 SPI <(-1), VCI <30, TCI <40
 (None of the above)

General limitation for drought indices usage: Validation!

Finer resolution analysis based on Landsat-8

Growing Season maximum NDMI (November-May)

2015-16

2017-18

Finer resolution analysis based on Landsat-8

• Land Surfance Temperature

2016, February

2018, February

CASE STUDY 2: Global analysis

Highlights (2015, December):

- Unfavorable conditions in South Africa, including the maize growing area.
- Some missing information, because of cloud cover (e.g. Northern regions).

CASE STUDY 2: Global analysis

CASE STUDY 2: Global analysis

Drought impact on agricultural systems

Reference period: 2001-2018 – aggregate over the country

CASE STUDY 3: Yield estimation

Time series

Yield data

Remote Sensing based input

- MODIS 8-Day 500m surface reflectance (MOD09A1)
- MODIS 8-Day 1km Land Surface Temperature (MOD11A1)
- MODIS 8-Day 500m Evapotranspiration (ET) (MOD16A2)

Methods

- Convolutional neural network (CNN)
- CNN followed by long-short term memory (LSTM)

REFERENCES

- NCDC (2015) Billion-dollar weather and climate disasters: overview. <u>http://www.ncdc.noaa.gov/billions/overview</u>.
- UN-DESA (2013) Establishing Drought Early Warning Systems in West Asia and North Africa. Technical Report
- CEC (2007) Impact assessment. Accompanying document from the Commission to the European Parliament and the Council COM (207). Coordinating European Council, Brussels, Belgium
- World Meteorological Organization (WMO) and Global Water Partnership (GWP), 2016: Handbook of Drought Indicators and Indices (M. Svoboda and B.A. Fuchs). Integrated Drought Management Programme (IDMP), Integrated Drought Management Tools and Guidelines Series 2. Geneva.
- Graw, V., Ghazaryan, G., Schreier, J., Gonzalez, J., Abdel-Hamid, A., Walz, Y., ... & Dubovyk, O. (2018, July). Timing is Everything-Drought Classification for Risk Assessment. In *IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium* (pp. 8267-8270). IEEE.
- IPCC (2014). Climate Change 2014: Impacts, Adaptation, and Vulnerability. IPCC. Available at http://www.ipcc.ch/report/ar5/wg2/.
- Kogan, F. N. (1998). Global drought and flood-watch from NOAA polar-orbitting satellites. Advances in Space Research, 21(3), 477-480.
- Wegmann, M., Leutner, B., & Dech, S. (Eds.). (2016). Remote sensing and GIS for ecologists: using open source software. Pelagic Publishing Ltd.

THANK YOU

We thank BMBF for funding the GlobeDrought (grant no. 02WGR1457F)

odubovyk, gghazary @uni-bonn.de

@ZFLbonn